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Cover Credit:
Hurricane Otis 25 October 2023

Hurricane Otis experienced extremely rapid intensification in the 12 hours before it made landfall 
near Acapulco, Mexico, as a Category 5 storm on 25 October 2023.

Imagery courtesy of CIMSS - Cooperative Institute for Meteorological Satellite Studies, University of 
Wisconsin-Madison
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h. Tropical cyclone heat potential
—F. Bringas,  I-I. Lin,  and J. A. Knaff
Tropical cyclone heat potential (TCHP) is an indicator of the amount of heat stored in the 

upper ocean that can potentially promote tropical cyclone (TC) intensification and regulate 
ocean–atmosphere enthalpy fluxes and TC-induced sea-surface temperature (SST) cooling (e.g., 
Lin et al. 2013). TCHP is calculated by integrating the ocean temperature between the sea surface 
and the 26°C isotherm (D26), which has been reported as the minimum temperature required 
for TC genesis and intensification (Leipper and Volgenau 1972; Dare and McBride 2011). TCs 
traveling over regions of high TCHP conditions experience higher heat fluxes from the ocean 
into the atmosphere, favoring intensification and leading to reduced SST cooling (e.g., Lin et al. 
2013). Areas in the ocean with TCHP values above 50 kJ cm−2 have been statistically linked with 
TC intensification, including rapid intensification when the maximum sustained wind speed 
increases by at least 30 kt in 24 hours in situations in which atmospheric conditions are favorable 
(e.g., Shay et al. 2000; Mainelli et al. 2008; Lin et al. 2021; Knaff et al. 2018, 2020). In addition 
to upper-ocean heat content, upper-ocean salinity conditions may also modulate TC intensifica-
tion as storms traveling over areas of fresh water-induced barrier layers may receive increased 
air–sea heat fluxes caused by reduced upper-ocean mixing and cooling (e.g., Balaguru et al. 
2012; Domingues et al. 2015).

We present an assessment and analysis of the upper-ocean heat content conditions during 
2023, based on estimates of two parameters: 1) TCHP (e.g., Goni et al. 2009, 2017) global anoma-
lies with respect to their long-term mean (1993–2022) and 2) TCHP in 2023 compared to conditions 
observed in 2022. TCHP anomalies during 2023 (Fig. 4.40) are computed for June–November in 
the Northern Hemisphere and November 2022–April 2023 in the Southern Hemisphere. The 
seven regions where TCs typically form, 
travel, and weaken/intensify are highlighted 
in Fig. 4.40. In all these regions, TCHP values 
exhibit large temporal and spatial variability 
due to mesoscale features (e.g., surface 
currents and associated eddies and rings) 
and short- to long-term modes of climate 
variability (e.g., North Atlantic Oscillation, 
El Niño–Southern Oscillation, and the 
Pacific Decadal Oscillation). The differences 
in TCHP anomalies between 2023 and 2022, 
as depicted in Fig. 4.41, were computed for 
the primary months of TC activity in each 
hemisphere as described above.

TCHP anomalies during 2023 exhibited 
above-average values in all TC regions and 
basins, including the eastern North Pacific 
and western North Pacific and the southwest 
Indian Ocean where, despite smaller areas of 
negative anomalies, average values in the 
regions were positive albeit closer to the 
long-term mean (Fig. 4.40). These positive 
TCHP anomalies were particularly large in 
most areas of the North Indian, the south-
west Pacific, the North Atlantic, the Gulf of 
Mexico, and the equatorial regions of the 
eastern North Pacific where most TCs travel 
and intensify. TCHP anomalies reached values up to 30 kJ cm−2, which are indicative of favorable 
oceanic conditions for the development and intensification of TCs. These same regions had 
TCHP anomalies during 2023 that were more than 20 kJ cm−2 larger than in 2023. Meanwhile, the 
South Indian Ocean, the western North Pacific, and the Bay of Bengal had near- or below-average 

Fig. 4.40. Global anomalies of tropical cyclone heat poten-
tial (TCHP; kJ cm−2) during 2023 computed as described in 
the text. The boxes indicate the seven regions where TCs 
typically occur; from left to right: southwest Indian, North 
Indian, northwest Pacific, southeast Indian, South Pacific, 
northeast Pacific, and North Atlantic (shown as Gulf of 
Mexico and tropical Atlantic separately). The green lines 
indicate the trajectories of all tropical cyclones reaching at 
least Category 1 (1-minute average wind ≥64 kt) and above 
during Nov 2022–Apr 2023 in the Southern Hemisphere and 
Jun–Nov 2023 in the Northern Hemisphere, and purple lines 
indicate Category 1 TCs that occurred outside these periods. 
The number above each box corresponds to the number of 
Category 1 and above cyclones that traveled within that box. 
Gulf of Mexico is shown in the inset in the lower right corner.
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TCHP anomalies during 2023, and their TCHP was lower in 2023 compared to the previous year 
(Fig. 4.41).

The positive anomalies in the eastern 
North Pacific and central Pacific equatorial 
areas, with values during 2023 larger than 
50 kJ cm−2 compared to 2022 (Fig. 4.41), were 
associated with the El Niño. In contrast, over 
the western North Pacific, negative anoma-
lies of −10 kJ cm−2 to −20 kJ cm−2 as compared 
to 2022 were observed, consistent with a 
strong El Niño, which is known to reduce 
TCHP in the northwest Pacific (Zheng et al. 
2015; Lin et al. 2020).

Consistent with the observed slightly 
above-average TCHP anomalies during 
2023 in the region, the 2022/23 southwest 
Indian Ocean cyclone season was below 
average in terms of named storms but above 
average in terms of accumulated cyclone 
energy (ACE; Fig. 4.40). The most intense 
storm of the season was Cyclone Freddy. During its westward track until making landfall in 
Madagascar and Mozambique, Freddy weakened and re-intensified repeatedly, completing 
seven independent cycles of rapid intensification while traveling over areas with SSTs greater 
than 28°C and a TCHP greater than 40 kJ cm−2 (see Sidebar 4.2 for details).

Large positive areas of high TCHP anomaly values, in excess of 30 kJ cm−2 from the long-term 
average, were observed in regions of the southwest Indian and southwest Pacific, where TCs typ-
ically form and develop. However, 2022/23 generated near-average TC activity in these regions 
with a total of six TCs, of which four reached Category 1 intensity or above.

In the North Indian Ocean, above-average TCHP anomalies in excess of 30 kJ cm−2 and 10 kJ 
cm−2 were observed during 2023 in the northern Arabian Sea and the southern Bay of Bengal, 
respectively (Fig. 4.40). The most intense storm was Category 5 TC Mocha, which occurred in May 
(Fig. 4.40, in purple). After being named in the Bay of Bengal on 9 May, Mocha experienced two 
cycles of rapid intensification on 12 May and then 13 May, reaching its estimated peak intensity of 
1-minute sustained wind speed of 140 kt (72 m s−1) and a minimum central barometric pressure of 
918 hPa, according to the Joint Typhoon Warning Center (JTWC), while traveling over extremely 
favorable oceanic conditions characterized by SSTs greater than 30°C and a TCHP greater than 
120 kJ cm−2.

Upper-ocean thermal conditions are largely modulated by the state of the El Niño–Southern 
Oscillation (ENSO) in the North Pacific Ocean (e.g., Zheng et al. 2015; Lin et al. 2020). While 
La Niña was predominant in the region during 2022, a shift to El Niño started early in 2023 with 
the transition occurring by June. El Niño became strong by late 2023 (section 4b). Consistent 
with this change in the ENSO state, TCHP anomalies were positive in the equatorial region of the 
eastern North Pacific with values well above 30 kJ cm−2, while in the western North Pacific TCHP 
anomalies were positive although closer to the long-term mean (Fig. 4.40). Compared to 2022, 
TCHP anomalies in the eastern North Pacific during 2023 were larger by more than 20 kJ cm−2 in 
the equatorial regions while they were mostly negative by a similar magnitude in the western 
North Pacific (Fig. 4.41).

Tropical cyclone activity in the western North Pacific in 2023 was relatively low, although 
seven TCs reached Category 4 or 5 status. Among them, Super Typhoon Mawar was the most 
intense TC of the northwest Pacific in 2023, with a maximum intensity of 160 kt (82 m s−1), 
according to the JTWC. Mawar originated and intensified at relatively low latitudes (~15°N) in 
May. At this low latitude, even in May, TCHP values were still high (~140 kJ cm−2) and could favor 
Mawar’s intensification.

The favorable oceanic conditions for TC intensification noted in the eastern North Pacific 
likely contributed to the above-average hurricane season observed during 2023. The two most 

Fig. 4.41. Tropical cyclone heat potential (TCHP) anomaly dif-
ference between the 2023 and 2022 tropical cyclone seasons 
(kJ cm−2; Jun–Nov in the Northern Hemisphere and Nov–Apr 
in the Southern Hemisphere). The Gulf of Mexico is shown in 
the inset in the lower right corner.
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intense TCs of the season were Category 5 Hurricanes Jova and Otis, which underwent short 
periods of rapid intensification while traveling over regions of similar upper ocean thermal con-
ditions characterized by SSTs greater than 29°C and a TCHP greater than 80 kJ cm−2.

In the North Atlantic basin, upper-ocean thermal conditions during the 2023 hurricane 
season were characterized by TCHP anomalies larger than the long-term average, except in a 
reduced area near the northeast coast of the United States, where TCHP anomalies were slightly 
negative with respect to the long-term mean (Fig. 4.40). In particular, large TCHP anomalies 
were observed in the southeast portion of the basin west of Africa, the Caribbean Sea and the 
tropical North Atlantic around Cuba, and the Gulf of Mexico, where TCHP anomalies reached 
average values of up to 35 kJ cm−2 during the season. The same spatial distribution was observed 
for areas of TCHP anomalies that were larger in 2023 compared to the previous year throughout 
most of the region (Fig. 4.41), with anomalies in excess of 25 kJ cm−2 in the areas with the largest 
TCHP anomalies during 2023. It is likely that these favorable upper ocean thermal conditions 
contributed to 2023 being the fourth most active on record for named storm formations, with a 
total of 20 named storms (Fig. 4.40). The 2023 season was also the most active season on record 
for a year with a strong El Niño; Category 5 Hurricane Lee was the strongest storm of the season 
in this region. The system traveled over areas of favorable oceanic conditions with SSTs greater 
than 30°C and a TCHP greater than 90 kJ cm−2, reaching its estimated peak intensity of 145 kt 
(75 m s−1) and a minimum central barometric pressure of 926 hPa. Lee rapidly intensified from 
Category 1 to Category 5 during a 24-hour period with an increase in wind speed of 75 kt (39 m s−1). 
Despite these favorable oceanic conditions, Lee subsequently weakened due to TC-unfavorable 
atmospheric conditions, including an increase in vertical wind shear.

In summary, favorable upper-ocean thermal conditions were observed in all TCHP basins 
during the 2023 season, except for the western North Pacific and southeast Indian Ocean, where 
conditions were slightly above average compared to the long-term mean. TCHP anomalies during 
2023 were higher in most basins compared to the previous year, with the exception of the same 
two regions (western North Pacific and southeast Indian Ocean basins) where anomalies during 
2023 were lower than those of the previous year. TC activity based on the number of named 
storms was consistent with these thermal conditions for every region. Several storms, including 
Intense Cyclone Freddy in the southwest Indian, Super Typhoon Mawar in the western North 
Pacific, Major Hurricanes Jova and Otis in the eastern North Pacific, and Major Hurricane Lee in 
the North Atlantic underwent rapid intensification, including several independent rapid inten-
sification cycles in some cases, while traveling over areas with favorable oceanic conditions with 
high SST and TCHP values.
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